Effects of Dietary Supplementation of Conjugated Linoleic Acid on Pro- and Anti-Inflammatory Cytokines Gene Expression in Uterus of Holstein Dairy Cows

A. Abolghasemi¹, Z. Ansari Pirsaraei¹*, E. Dirandeh¹, and B. Shohreh¹

ABSTRACT

After parturition, inflammation of the reproductive tract in cows is common because of bacterial contamination of the uterine lumen. To investigate the beneficial effects of dietary Conjugated Linoleic Acid (CLA) supplementation on health status mediated by change in pro- and anti-inflammatory cytokine genes expression, endometrial samples were collected from Holstein cows with similar parturition date and reproductive records. From day 21 before calving to day 42 after calving, cows were fed isonitrogenous, isocaloric, and isolipidic diets that differed only in the source of fats. Cows were fed diets supplemented with palm oil as control group (saturated FA; n= 8), and CLA for the treatments, and the rate of each fat in any diet was 75 g d⁻¹. CLA-supplemented diet was provided with a mixture of trans-10, cis-12 CLA and cis-9, trans-11 CLA isomer. Rumen protected CLA provided 10 g d⁻¹ each of trans-10, cis-12 CLA and cis-9, trans-11 CLA isomers. Uterine endometrial biopsies were collected at days 21 and 42 after calving and were prepared to determine pro-inflammatory [including Tumor Necrosis Factor-a (TNFa), InterLeukins (IL-1, IL-6, IL-8) and InterFeron-gamma (IFN-y)] and antiinflammatory [interleukin 10 (IL-10)] cytokine genes expression. Results showed that dietary CLA supplementation decreased the expression of IL-1 and IL-8 at days 21 (respectively, 1.8 and 3.9 fold) and 42 (respectively, 4 and 104 fold) postpartum and increased expression of IL-10 at days 21 and 42 (respectively, 9.7 and 2.5 fold). The TNFa expression significantly decreased in day 21 in CLA groups compared with palm (2.5 fold). There was no difference between groups for IL-6 expression. IFN- γ expression decreased in day 21 (3.0 fold) and, conversely, increased in day 42 (2.5 fold) in CLA group compared to palm. Our results showed that, during transition period, dietary supplementation with CLA reduced inflammatory processes via inhibiting proinflammatory cytokines and stimulating anti-inflammatory cytokines.

Keywords: Endometrium, Inflammation, Palm oil, TNFa expression.

INTRODUCTION

In female genital tract, microbial disease is common and contributes to significant economic losses in humans and cattle among the mammals (Sheldon *et al.*, 2009). After parturition, in dairy cows, uterine function is often compromised by bacterial contamination, and pathogenic bacteria often persist, causing some uterine diseases which are the main factors of infertility in cattle and affect resumption of ovarian follicular cycle (Sheldon *et al.*, 2006; Sina *et al.*, 2018). Postpartum endometritis, which is caused by bacterial infections, can increase the number of days to conception, services per conception, and risk of culling (Ghasemi *et al.*, 2012), because the presence of bacteria in the uterus causes inflammation and delays uterine involution (Williams *et al.*, 2005).

¹Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: ansari2000@yahoo.com

The innate immune system is responsible for identifying and responding to the bacterial contamination. In response to pathogen challenge in the uterus, neutrophil cells are the most important phagocytic cell type recruited from the peripheral circulation. After pathogen diagnosis, immune cells release pro-inflammatory molecules including Tumor Necrosis Factor- α (TNF α), InterLeukins (IL-1, IL-6, IL-8), and nitric oxide (Herath et al., 2006) and anti-inflammatory cytokines major containing InterLeukin (IL)-1 Receptor Antagonist (IL-1 RA), IL-4, IL-10, IL-11, and IL-13. Furthermore, specific cytokine receptors for IL-1, tumor necrosis factor- α , and IL-18 function as pro-inflammatory cytokine inhibitors (Bonsale et al., 2018).

Inflammatory and immune cells have PolyUnsaturated Fatty Acids (PUFAs) in their cell membrane, therefore, the dietary fatty acids supplementation can affect fatty acid composition of these cells via changing the proportion of PUFAs in these cells (Calder, 2001). Conjugated Linoleic Acid (CLA) is an intermediate product in biohydrogenation of linoleic acid to stearic acid (Kepler et al., 1966) and is a component of an unsaturated fatty acids group that exist as positional and geometric isomers of octadecadienoate (18:2) (Belury, 2002). CLA is naturally found in many animal products, such as those from ruminant sources where it is synthesized by rumen bacteria from linoleic acid or in ruminant tissues, particularly mammary tissue (Griinari et al., 2000). It has been shown that CLA inhibits carcinogenesis and atherosclerosis. enhances immunologic function while protecting against the catabolic effects of immune stimulation, and affects body composition, and stimulates the growth (Pariza et al., 2000). It has beneficial effect on reproduction (Abolghasemi et al., 2016; Rezaei Roodbari et al., 2016).

As a whole, there are limited studies that consider the effects of CLA on inflammation. However, its beneficial effects on inflammatory responses have been reported in a number of animal models including decreased antigen induced by immune cells, cytokine production reduced adverse effects of immune challenges, and modulation of inflammatory mediators such as cytokines, prostaglandins, leukotrienes, and immunoglobulins (Viladomiu et al., 2016).

Cook et al. (1993) demonstrated that supplementation of conjugated dietary linoleic acid (CLA) in chicks could enhance the lymphocyte proliferation. Turek et al. (1998) found that CLA supplement might alter the production of immune elements in rats. Moreover, study on human showed that CLA could beneficially affect immune function in healthy human volunteers by improving volunteer's ability to respond effectively to infectious agents and increasing their resistance to allergic agents (Song et al., 2005).

In the present study, our hypothesis was that CLA has positive effect on health status and followed that reproduction may be mediated via changing inflammatory condition and anti-inflammatory (procytokines). Therefore, this study was designed to investigate the effects of dietary CLA supplementation on the inflammatory status in cows after parturition to find out the effect of CLA on a pathway to decrease the inflammation.

MATERIALS AND METHODS

The Ethical Commission approved the experiment for Experimental Use of Animals of Sari Agricultural Sciences and Natural Resources University.

Cows and Treatments

Sixteen multiparous lactating dairy cows were blocked based on expected calving date and parity, and randomly assigned to one of the two dietary treatments. All cows fed by adjusted diet between days -21 to +42 (Calving= Day 0). Neither of the two groups differed in parity (3.1 ± 0.4) and body condition score at calving (3.1±0.14). All cows checked by expert veterinarian from calving to clean test (at days 7, 14, 21 and 28 postpartum) via measurement of rectal temperature and palpation and only healthy cows were assigned into experiment as described by Dirandeh et al.. (2013). The uterus was considered fully involutes when the cervix and previous gravid horn diameter after calving decreased to unchanged and was similar to that of a non-gravid uterus. The cervix decreased from approximately 30 parturition to immediately after cm approximately 2 cm by day 7 postpartum. Both diets were equal in concentration of dry matter, crude fat, and crude protein, but were different in fat sources. The prepartum and postpartum diets were adjusted based on NRC (2001) (Table 1). The cows were fed on diets that included rumen-protected supplements of palm oil (saturated FA; n= 8) as the control, or CLA (Lutrell® pure, BASF SE, Ludwigshafen, Germany), and the quantity of each fat in any diet was 75 g d⁻¹. The CLA-supplemented diet was prepared by a mixture of *trans*-10, *cis*-12 CLA and *cis*-9, and *trans*-11 CLA isomer. The diets included the rumen-protected supplements of palm oil plus basal diet (saturated FA; n= 8), and CLA plus basal

Table 1. Ingredients and nutrient composition (% DM unless otherwise noted) of pre and postpartum diets.

Item	Prepartum	Postpartum
Ingredient		-
Alfalfa hay mid	24.4	22.8
Wheat straw	9.6	
Corn silage	28.8	22.0
Beet pulp, dehydrated		4.1
Corn grain, ground	14.1	16.4
Barley grain, rolled	8.5	14.5
Soybean meal, 48%	7.0	14.5
Soybean whole, roast		0.8
Cottonseed whole	1.0	
Wheat	2.1	
Sodium bicarbonate		0.9
Salt		0.4
DCP		0.3
Magnesium oxide		0.3
Glucosa	2.0	1.3
Choline chloride	0.8	0.4
Palm oil ^{<i>a</i>} /CLA supplement ^{<i>b</i>}	0.5	0.3
Mineral and vitamin premix ^{c}	1.2	1.0
Composition		
NEL (MJ kg ⁻¹ DM)	6.7	7.3
Fat	3.3	4.1
Crude protein	13.4	17.1
Neutral detergent fiber	36.8	32.0
Acid detergent fiber	23.1	22.3

^{*a*} Energizer-RP10; Iffco, Johor Bahru Johor, Malaysia. ^{*b*} Lutrell Pure, BASF, Ludwigshafen, Germany. ^{*c*} Contained (Per kg): 500,000 IU of vitamin A, 100,000 IU of vitamin D, 1,000 of mg vitamin E, 9,000 mg of P, 195,000 mg of Ca, 2,000 mg of Mn, 55,000 mg of Na, 2,000 mg of Zn, 2,000 mg of Fe, 280 mg of Cu, 100 mg of Co, 100 mg of Br, 1 mg of Se, 3,000 mg of anti-oxidant.

diet (Lutrell[®] pure, BASF SE, Ludwigshafen, Germany), and the amount of each fat in any diet was 75 g d⁻¹. Rumen protected CLA provided 10 g d⁻¹ each of *trans*-10, *cis*-12 CLA and *cis*-9, *trans*-11 isomers.

Feeding time during prepartum was twice a day (8:00 AM and 4:00 PM) and after calving, it changed to four times a day (7:00 and 11:00 AM; 3:00 and 7:00 PM) by TMR formulated based on NRC (2001) to meet all animal requirements. To ensure palatability, fat supplements were manually mixed with 425 g specially-formulated concentrate and were top-dressed on the morning TMR feeding once a day.

Uterine Biopsy and Tissue Sampling

By passing a biopsy implement through the cervix into the uterine horn ipsilateral to the corpus luteum by means of transrectal manipulation, uterine endometrial biopsies were collected on days 21 and 42 of postpartum (Dirandeh et al., 2015). The open jaws of the biopsy basket (2×1) were compacted against the endometrium and endometrium extractions of samples (approximately 100 mg) were collected. Then, uterine samples were washed by sterile Phosphate-Buffered Saline (PBS), placed in a screw-cap micro centrifuge tube and instantly got snap-frozen in liquid nitrogen, and were stored at -80°C up to RNA extraction.

RNA Extraction and cDNA Synthesis

Total RNA from the samples was extracted according to the manufacturer's instructions of Total RNA Purification Kit (Jena bioscience, Jena, Germany). Quality of extracted RNA was confirmed by testing them on agarose gel (2%) electrophoresis. To eliminate the DNA contaminations, total RNA (1 mg) was treated with 1 U DNase, and treated RNA was transcribed to cDNA by utilization of Cycle Script RT PreMix (dN6) cDNA Synthesis kit (Bioneer, Seoul, South Korea) according to the manufacturer's instructions.

Real-Time PCR

A total volume of 20 μ L with 1 μ L cDNA (50 ng mL⁻¹), 10 μ L SYBR Green 1 master mix (QuantiNovaTM SYBR® Green PCR Kit, Qiagen Inc., Tehran, Iran land), 1 μ L forward and reverse primers (20 ng of each) and 8 μ L nuclease free H₂O were used for Real-time PCR reactions. All primers used in this study were extracted from Salehi *et al.* (2017). After finishing reactions for each gene to make sure of the presence of a single PCR product, dissociation curves were examined.

Real-time RT PCR was performed using a Corbett Rotor-GeneTM 3000 Quantitative PCR System (Corbett Life Sciences, Sydney, Australia) with the following cycling programme: 95°C for 15 minutes and 40 cycles of 95°C for 15 seconds, 60°C for 20 seconds, 72°C for 20 seconds, followed by amplicon dissociation (95°C for 1 minute, 50°C for 45 seconds, increasing 0.58/cycle until 95°C was reached).

The $\Delta \Delta Ct$ method was used for calculating gene expression results and the the correction for amplification efficiency was used for data normalizing to a calibrator sample (Pfaffl, 2001), then the Fold changes in gene expression between the control (palm) and the CLA groups were determined. As β -Actin (ACTB) was in a stable gene under diverse conditions, it was picked out as a housekeeping gene and samples were run in duplicate and were expressed comparative to that.

Statistical Analyses

Data that were not normally distributed as tested with Shapiro–Wilk test were logarithmically transformed. Homogeneity of variance was tested with O'Brien and Brown-Forsythe tests. Analysis of variance was performed using SAS software with treatments as the main effect and experiment replicates as the random variable in the *F*-test. The differences among means for multiple comparisons were examined by Tukey–Kramer honest significant difference test and significance and tendencies were declared at P< 0.05 and P< 0.10, respectively, unless otherwise indicated.

RESULTS

Uterine endometrial pro- and antiinflammatory genes including IL-8, TNF- α , INF- γ and IL-10 were found to be differentially (P< 0.05) expressed between the control and CLA-fed animals, and there was no difference in IL-6 gene expression between cows treated with CLA and the control diet in days 21 and 42 (P> 0.05) (Figure 1).

Days relative to calving

Figure 1. Relative mRNA of pro- inflammatory including Tumor Necrosis Factor- α (TNF α), InterLeukins (IL-1, IL-6, IL-8) and InterFeron- γ (IFN- γ]), and anti-inflammatory interleukin 10 (IL-10) cytokines during days 21 and 42 postpartum. a, b indicates differences due to the main effect of treatment (P< 0.05); * Indicates effect of the same treatment at different times (P< 0.05).

Mean relative expression for TNF- α decreased by 2.5 fold in CLA fed cows compared with the controls on day 21 (P< 0.05), but there was no significant difference between the two treatments in day 42 (P> 0.05).

Relative IL-1 mRNA levels decreased by 1.82 and 3.97 fold in the endometrium of CLA-fed animals compared to those fed the control diets at days 21 and 42 postpartum, respectively (P< 0.05). The levels of IL-8 mRNA in the CLA-fed animals were approximately four fold (day 21 postpartum) and hundred fold (day 42 postpartum) lower than those fed with the control diets (P< 0.05, Figure 1). The mean of IL-8 genes expression was higher in days 42 to 21 in CLA-fed cows (P< 0.05).

The mean relative expression of INF- γ mRNA was about 3.0 fold lower in animals fed CLA diet than in those fed the control diet at d 21 postpartum (P< 0.05). There was a strong tendency towards an approximately 2.5-fold increase in mean INF- γ gene expression in animals fed CLA diet compared with the control diet at d 42 postpartum (P< 0.05). In addition, the expression of INF- γ mRNA showed a 7.5-fold increase in CLA treatment over time (P< 0.05).

Mean gene expression for IL-10 increased (P< 0.05) by 9.68 fold in CLA fed cows than in the controls at day 21 postpartum and by 2.5 fold at day 42 postpartum (P< 0.05), Mean gene expression for IL-10 was lower at day 42 postpartum compared with d 21 postpartum (P< 0.05).

DISCUSSION

In the present study, we investigated the effects of dietary CLA supplementation proinflammatory and anti-inflammatory cytokines at gene levels. The results showed that CLA supplementation reduced some key genes related to inflammation, therefore, it can help cow to combat with negative effect of inflammation on health status and reproductive performance, thus it would be a good strategy to use CLA during transition period to improve the uterus conditions for establishment and maintenance of pregnancy.

Dietary FAs are known as major biologic regulators and have properties that are related to health and disease (Dirandeh et al.. 2013: 2015). Dietary CLA supplementation has positive effects on some immune parameters, and enhances the host defenses against invading organisms (Corino et al., 2001). Consistent with earlier findings, analysis of our data illustrated that most pro-inflammatory cytokines cause inflammation decrease during both days 21 and 42, in cows fed with CLA, in contrast to Other the control group. long-chain unsaturated FAs such as linoleic acid and n-3 FAs decrease or inhibit the proinflammatory cytokines production (Calder, 2001; Håversen et al., 2009).

The high concentrations of TNF- α and IL-1 are destructive and are implicated in some of the pathologic responses (Calder, 2006). Since, PolyUnsaturated Fatty Acids (PUFA) modulate immune responses and inflammation, n-3 FAs block TNF-α and IL-1β synthesis pathway (Endres et al., 1989; Loscher et al., 2005). In addition, some eicosanoids such as PGE2 and PGE3 prostaglandins inhibit the production of these two cytokines (Miles et al., 2002). CLA by effects on COX-2 may cause an increase in the prostaglandins production, so, it affects the inhabitation of proinflammatory cytokines by enhancing prostaglandins (Abolghasemi et al., 2016). Dirandeh and Ghaffari (2018) reported that positive effect of omega-3 on reproduction may act through a mechanism involving the endocannabinoid system.

Another cytokine produced by different types of cells upon stimulation with inflammatory stimuli and exerts a variety of functions on leukocytes is IL-8. There is no definitive evidence presented on its role in activating neutrophils in the lesions of various types of inflammatory reactions, but IL-8 plays a causative role in acute inflammation by recruiting and activating the neutrophils (Harada et al., 1994). Evidences of a study on the effects of palmitic acid, the common plasma free FA, on IL-8 demonstrated that this FA stimulates the production of IL-8 (Joshi-Barve et al., 2007). On the other hand, the n-3 FA DocosaHexaenoic Acid (DHA) consumption that is one of the major components of fishoil diets, results in the inhibition of some pro-inflammatory cytokines like IL-6 and IL-8. Comparing different FAs reveals that increase in the number of double band in the structure of FAs may increase their antiinflammatory effects (De Caterina et al., 1994; 2000). In addition, DHA has an inhibitory effect on the IFN- γ cytokine (Khair-el-Din et al., 1995).

In contrast to other cytokines, little is known about the effect of FAs on IFN- γ production. Although, CLA consumption young volunteers showed in healthy significant decrease in IFN- γ during the time (Song et al., 2005), our results proposed that, following the CLA feeding and after reduction of IFN- γ in day 21, there is a great increment in uterus by passing days to day 42. Long-term *n*-3 and *n*-6 FAs consumption resulted in a reduction of circulating the key cytokines pro-inflammatory including interleukin-1, 6, TNF- α and IFN - γ (Purasiri et al., 1994). The results from the present study suggest that the CLA supplement has no significant effects on IL-6, but other FAs like EicosaPentaenoic Acid (EPA) cause decrease in IL-6 secretion after UVBirradiation (Pupe et al., 2002).

It is believed that IL-10 confers protection against an overwhelming inflammatory response. An experiment on adipocytes incubated with DHA showed that the expression of genes IL-10 was increased to two fold (Bradley *et al.*, 2008). In other study on blood samples, the n-3 fatty acid did not have any significant effect on IL-10 secretion (Vedin *et al.*, 2008). Same as our results about IL-10, Loscher and colleagues (2005) have shown that the *cis*-9, *trans*-11 isomer of CLA may enhance the production of IL-10 in murine dendritic cells (DC). The *cis*-9, *trans*-11 isomer of CLA may enhance the production of IL-10 in murine dendritic cells (Loscher *et al.*, 2005). Similarly, we found a greater genes expression of IL-10 in cows fed by CLA compared to control cows in both days 21 and 42. The IL-10 confers protection against an overwhelming inflammatory responses, the expression of IL-10 gene, in adipocytes incubated with DHA, increased to two fold (Bradley *et al.*, 2008), but in another study on blood samples, the *n*-3 FAs didn't have any significant effects on IL-10 levels (Vedin *et al.*, 2008).

The success of early pregnancy in the mated cow is dependent on the successful maternal recognition of pregnancy (Mann et al.., 1999). To achieve this embryo must prevent the demise of the corpus luteum by the timely production of InterFeron tau (IFN- τ), the embryonic signal that acts to inhibit the development of the maternal luteolytic mechanism. IFN- τ acts locally in the uterus to suppress the development of oxytocin receptors in the endometrium and thereby suppresses the secretion of luteolytic episodes of PGF2 α generated by the binding of oxytocin to its receptors (Mann et al.., 1999). Supplementation with inhibitory fatty acids such as EPA during early pregnancy by dietary or parenteral means may further enhance the suppression of PGF2 α secretion in concert with the action of embryonic IFN- τ (Dirandeh et al., 2015). Dynamics of maternal progesterone secretion also appear important for conceptus development and secretion of IFN- τ , which is secreted by the embryo for gestation recognition by the mother. Dirandeh et al. (2015) reported n-3 fatty acids prevent $PGF_{2\alpha}$ secretion from bovine endometrium and increased progesterone concentrations. Abolghasemi (2016)reported et al. that CLA supplementation during transition period increased progesterone concentrations in dairy cows.

Results of the present study showed that the production levels of pro and antiinflammatory cytokines were regulated by CLA in the bovine endometrium tissue. We suggested that the CLA has inhibitory effect on pro-inflammatory cytokines and enhances the anti-inflammatory cytokine IL-10, leading to reduction in inflammation of endometrium during early lactation.

ACKNOWLEDGEMENTS

We thank Mahdasht Dairy Cow Farm (Iran, Mazandaran, Sari) for providing research facilities to perform part of the project.

REFERENCES

- 1. Abolghasemi, A., Dirandeh, E., Ansari Pirsaraei, Z. and Shohreh, B. 2016. Dietary Conjugated Linoleic Acid Supplementation Alters the Expression of Genes Involved in the Endocannabinoid System in the Bovine Endometrium and Increases Plasma Progesterone Concentrations. *Theriogenology.*, **86**: 1453-1459.
- Belury, M. A. 2002. Inhibition of Carcinogenesis by Conjugated Linoleic Acid: Potential Mechanisms of Action. J. Nutr., 132: 2995-2998.
- Bradley, R. L., Fisher, F. M. and Eleftheria, M. F. 2008. Dietary Fatty Acids Differentially Regulate Production of TNF-α and IL-10 by Murine 3T3-L1 Adipocytes. *Obesity*, 16: 938-944.
- Bonsale, R., Seyed Sharifi, R., Dirandeh, E., Hedayat, N., Mojtahedin, A., Ghorbanalinia, M. and Abolghasemi, A. 2018. Endocannabinoids as Endometrial Inflammatory Markers in Lactating Holstein Cows. *Reprod. Dom. Anim.*, 53: 1–7.
- Calder, P. C. 2001. Polyunsaturated Fatty Acids, Inflammation, and Immunity. *Lipids*, 36: 1007-1024.
- Calder, P. C. 2006. n–3 Polyunsaturated Fatty Acids, Inflammation, and Inflammatory Diseases. Am. J. Clin. Nutr., 83: 1505S -1519S.
- Calder, P. C., Yaqoob, P., Thies, F., Wallace, F. A. and Miles, E. A. 2002. Fatty Acids and Lymphocyte Functions. *Br. J. Nutr.*, 87: S31-S48.
- 8. Cook, M. E., Miller, C. C., Park, Y. and Pariza, M. 1993. Immune Modulation by Altered Nutrient Metabolism: Nutritional

Control of Immune-Induced Growth Depression. *Poult. Sci.*, **72:** 1301-1305.

- Corino, C., Bontempo, V., & Sciannimanico D. 2001. Effects of Dietary Conjugated Linoleic Acid on Some Aspecific Immune Parameters and Acute Phase Protein in Weaned Piglets. *Can. J. Anim. Sci.*, 82: 115-117
- De Caterina, R., Cybulsky, M. I., Clinton, S. K., Gimbrone, M. A. and Libby, P. 1994. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. *Arterioscler. Thromb. Vasc. Biol.*, 14: 1829-1836.
- 11. De Caterina, R., Liao, J. K. and Libby, P. 2000. Fatty Acid Modulation of Endothelial Activation. *Am. J. Clin. Nutr.*, **71:** 213S-223S.
- 12. Dirandeh, E., Towhidi, A., Ansari pirsaraei, Z., Adib-Hashemi, F., Ganjkhanlou, M., Zeinoaldini, S., S, Roodbari, A. R., Saberifar, T., and Petit, H. V. 2013. Plasma Concentrations of PGFM and Uterine and Ovarian Responses in Early Lactation Dairy Cows Fed Omega-3 and Omega-6 Fatty Acids. *Theriogenology.*, 80:131–7.
- Dirandeh, E., Towhidi, A., Ansari Pirsaraei, Z., Saberifar, T., Akhlaghi, A. and Rodbari A. R. 2015. The Endometrial Expression of Prostaglandin Cascade Components in Lactating Dairy Cows Fed Different Polyunsaturated Fatty Acids. *Theriogenology*, 83: 206-212.
- Dirandeh, E. and Ghaffari J. 2018. Effects of Feeding a Source of Omega-3 Fatty Acid during the Early Postpartum Period on the Endocannabinoid System in the Bovine Endometrium. *Theriogenology*, **121**: 141-146.
- 15. Endres S., Cannon J. G., Ghorbani R., Dempsey R. A., Sisson S. D., Lonnemann G., Van der Meer J. W., Wolff S. M. and Dinarello C. A., 1989. In Vitro Production of IL 1 Beta, IL 1 Alpha, TNF and IL2 in Healthy Subjects: Distribution, Effect of Cyclooxygenase Inhibition and Evidence of Independent Gene Regulation. *Eur. J. Immunol.* 19: 2327–2333.
- Ghasemi, F., Gonzalez-Cano, P., Griebel, P. J. and Palmer, C. 2012. Proinflammatory Cytokine Gene Expression in Endometrial Cytobrush Samples Harvested from Cows

with and without Subclinical Endometritis. *Theriogenology.*, **78:** 1538-1547.

- 17. Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V. and Bauman, D. E. 2000. Conjugated Linoleic Acid Is Synthesized Endogenously in Lactating Dairy Cows by Δ 9-Desaturase. J. Nutr., **130**: 2285-2291.
- Harada, A., Sekido, N., Akahoshi, T., Wada, T., Mukaida, N. and Matsushima, K. 1994. Essential Involvement of InterLeukin-8 (IL-8) in Acute Inflammation. *J. Leukoc. Biol.*, 56: 559-564.
- Håversen, L., Danielsson, K. N., Fogelstrand, L. and Wiklund, O. 2009. Induction of Proinflammatory Cytokines by Long-Chain Saturated Fatty Acids in Human Macrophages. *Atherosclerosis.*, **202**: 382-393.
- 20. Herath, S., Dobson, H., Bryant, C. E. and Sheldon, I. M. 2006. Use of the Cow as a Large Animal Model of Uterine Infection and Immunity. *J. Reprod. Immunol.*, **69:** 13-22.
- Joshi-Barve, S., Barve, S. S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M. and McClain, C. J. 2007. Palmitic Acid Induces Production of Proinflammatory Cytokine Interleukin-8 from Hepatocytes. *Hepatology*, 46: 823-830.
- 22. Kepler, C. R., Hirons, K. P., McNeill, J. J. and Tove, S. B. 1966. Intermediates and Products of the Biohydrogenation of Linoleic Acid by *Butyrivibrio fibrisolvens. J. Biol. Chem.*, **241:** 1350-1354.
- Khair-el-Din, T. A., Sicher, S. C., Vazquez, M. A., Wright, W. J. and Lu, C. Y. 1995. DocosahexaenoicAcid, a Major Constituent of Fetal Serum and Fish Oil Diets, Inhibits IFN Gamma-Induced Ia-Expression by Murine Macrophages *In Vitro. J. Immunol.*, 154: 1296-1306.
- Loscher, C. E., Draper, E., Leavy, O., Kelleher, D., Mills, K. H. G. and Roche, H. M. 2005. Conjugated Linoleic Acid Suppresses NF-κB Activation and IL-12 Production in Dendritic Cells through ERK-Mediated IL-10 Induction. J. Immunol., 175: 4990-4998.
- Mann, G. E., Lamming, G. E., Robinson, R. S. and Wathes, D. C. 1999. The Regulation of Interferon-Tau Production and Uterine Hormone Receptors during Early Pregnancy. *J. Reprod. Fertil. Suppl.*, 54: 317–328.

- 26. Miles, E. A., Allen, E. and Calder, P. C. 2002. In Vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on Production of Monocyte-Drived Cytokines in Human Whole Blood Cultures. *Cytokine*, **20**: 215-223.
- 27. Pariza, M. W., Park, Y. and Cook, M. E. 2000. Mechanisms of Action of Conjugated Linoleic Acid: Evidence and Speculation. *Proc. Soc. Exp. Biol. Med.*, **223:** 8-13.
- Pfaffl, M. W. 2001. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. *Nucl. Acids Res.*, 29: e45e45.
- Pupe, A., De Haes, P., Rhodes, L., Garmyn, M., Moison, R., Beijersbergen van Henegouwen, G. and Degreef, H. 2002. Eicosapentaenoic Acid, a *n*-3 Polyunsaturated Fatty Acid Differentially Modulates TNF-α, IL-1α, IL-6 and PGE2 Expression in UVB-Irradiated Human Keratinocytes. *J. Invest. Dermatol.*, **118**: 692-698.
- Purasiri, P., Murray, A., Richardson, S., Heys, S. D., Horrobin, D. and Eremin, O. 1994. Modulation of Cytokine Production *In Vivo* by Dietary Essential Fatty Acids in Patients with Colorectal Cancer. *Clin Sci.*, 87: 711-717.
- 31. Rezaei roodbari, A., Towhidi, A., Zhnadi, M., Reza Yazdi, R., Rahimi-mianji, R., Dirandeh, E. and Colazo, M. G. 2016. Effect Conjugated Linoleic of Acid Supplementation during Thetransition Period on Plasma Metabolites and Productive and Reproductive Performances in Dairy cows. Anim. Feed Sci. Technol., 219: 294-303
- 32. Salehi, R., Colazo, M. G., Gobikrushanth, M., Basu, U. and Ambrose, D. J. 2017. Effects of Prepartum Oilseed Supplements on Subclinical Endometritis, Pro- and Anti-Inflammatory Cytokine Transcripts in Endometrial Cells and Postpartum Ovarian Function in Dairy Cows. *Reprod. Fertil. Dev.*, **29**: 747-758.
- 33. Sheldon, I. M., Cronin, J., Goetze, L., Donofrio, G. and Schuberth, H. -J. 2009. Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle. *Biol. Reprod.*, **81:** 1025-1032.
- 34. Sheldon, I. M., Lewis, G. S., LeBlanc, S. and Gilbert, R. O. 2006. Defining

Postpartum Uterine Disease in Cattle. *Theriogenology.*, **65:** 1516-1530.

- 35. Sina M., Dirandeh, E., Deldar, H. and Colazo, M. G. 2018. Inflammatory Status and Its Relationships with Different Patterns of Postpartum Luteal Activity and Reproductive Performance in Early Lactating Holstein Cows. *Theriogenology*, **108**: 262-268.
- Song, H. J., Grant, I., Rotondo, D., Mohede, I., Sattar, N., Heys, S. D. and Wahle, K. W. J. 2005. Effect of CLA Supplementation on Immune Function in Young Healthy Volunteers. *Eur. J. Clin. Nutr.*, **59:** 508-517.
- 37. Turek, J. J., Li, Y., Schoenlein, I. A., Allen, K. G. D. and Watkins, B. A. 1998. Modulation of Macrophage Cytokine Production by Conjugated Linoleic Acids is Influenced by the Dietary *n*-6:*n*-3 Fatty Acid Ratio. *J. Nutr. Biochem.*, **9**: 258-266.
- Vedin, I., Cederholm, T., Freund Levi, Y., Basun, H., Garlind, A., Faxén Irving, G. and Palmblad, J. 2008. Effects of Docosahexaenoic Acid–Rich n–3 Fatty Acid Supplementation on Cytokine Release from Blood Mononuclear Leukocytes: the OmegAD Study. Am. J. Clin. Nutr., 87: 1616-1622.
- Viladomiu, M., Hontecillas, R. and Bassaganya-Riera, J. 2016. Modulation of Inflammation and Immunity by Dietary Conjugated Linoleic Acid. *Eur. J. Pharmacol.*, **785**: 87-95.
- 40. Williams, E. J., Fischer, D. P., Pfeiffer, D. U., England, G. C. W., Noakes, D. E., Dobson, H. and Sheldon, I. M. 2005. Clinical Evaluation of Postpartum Vaginal Mucus Reflects Uterine Bacterial Infection and the Immune Response in Cattle. *Theriogenology*, 63: 102-117.

تاثیر مکمل سازی جیره با اسید لینولئیک کنژوگه بر بیان ژن سایتوکین های پیش و ضد التهابی در رحم گاوهای شیری هلشتاین

آ. ابوالقاسمی، ز. انصاری پیرسرائی، ع. دیرنده، و ب. شهره

چکیدہ

برای بررسی اثرات اسید لینولئیک مزدوج (CLA) خوراکی بر بیان ژن های سایتو کین های پیش التهابی و ضد التهابی در اندومتریوم، از گاوهای هلشتاین که از نظر تاریخ زایش، سوابق تولید مثلی و رکورد پیشین مشابه بودند نمونه برداری شد .گاوها از ۲۱ روز پیش از زایش تا ۴۲ روز پس از زایش با جیره ی ایزونیتروژنوس، ایزو کالریک و ایزولیپیدیک که تنها از لحاظ منبع چربی متفاوت بود تغذیه شدند .از نظر چربی جیره ی تماو شاهد دارای ۷۵ گرم روغن عبوری پالم و جیره ی آزمایشی دارای ۷۵ گرم ALDبود . چربی جیره ی تیمار شاهد دارای ۷۵ گرم روغن عبوری پالم و جیره ی آزمایشی دارای ۷۵ گرم ALDبود . محمل ALDدارای ۱۰ درصد از هر یک از ایزومر های ۱۰-ترانس، ۱۲ سیس و ۹سیس، ۱۱ ترانس بود . نمونه های رحم که در روزهای ۲۱ و ۴۲ پس از زایش به روش بیوپسی جمع آوری شدند، برای ارزیابی ژن های سایتوکین پیش التهابی از جمله :اینترلوکین ها)اLI-، ۶LI-، ۸(LI-، اینترفرون گاما (VI-)پو سایتوکین ضد التهابی اینترلوکین ۱۰) (LI-مورد بررسی قرار گرفتند. نتایج نشان دادند که تغذیه با دیا موجب کاهش ژن های ۱ LI-و ۶ LI-و افزایش بیان ژن ۱۰ LI-در هر دو روز ۲۱ و ۴۲ پس از زایش شد .با توجه به نتایج به دست آمده، تغذیه ALDدر دوره ی پس از زایمان با کاهش سایتوکین های پیش التهابی، در پی کاهش التهابی ایترلوکین ۱۰ یاد.